

Central Utilities at UNL: NU Corp & Development of Thermal Energy Storage (TES) at UNL East Campus

Big Ten and Friends Mechanical & Energy Conference U of Nebraska-Lincoln – October 15, 2012

Before NU Corp

No funds for deferred maintenance

- System condition was deteriorating
- □ Safety and reliability
- Capacity was inadequate

In the Beginning...

Initial Actions

- Bonds
- Gas / Elec Purchases
- Capital and operating funds

UNL Benefits

- Reduces Capital Budget Requests by providing Financing Mechanism
- Eliminates Deferred Maintenance
- Provides Specialized Expertise
- Improves System Reliability, Efficiency, and Safety
- Implements New Technologies

LES Benefits

- Builds a stronger Relationship with Largest Customer
- Lowers Energy Cost through Joint Purchasing and operating
- Retains Mutual Benefits of joint WAPA Scheduling
- Provides Capacity via Energy Conservation
- Provides Joint Planning and Coordination of Operations

LES's Role

Fuel purchases

- Rate Analysis
- Accounting /auditing
- Engineering support
- □ Assist in feasibility studies

UNL's Role

Operations

- Maintenance
- Construction
- Energy conservation
- Capital Planning

Energy Use under NUCorp

Project Costs & Savings

Project Type	No.	Installed Cost	Annual Savings	SP
chw sys	11	\$8,618,303	\$238,967	36.1
steam sys	12	\$1,118,786	\$160,097	7.0
electric sys	4	\$1,082,819	\$16,039	67.5
controls	16	\$2,535,331	\$2,071,239	1.2
HVAC	11	\$1,641,901	\$555,957	3.0
lights	10	\$1,477,224	\$591,106	2.5
equipment	5	\$339,137	\$145,793	2.3
insulation	3	\$237,595	\$186,590	1.3
NUCorp Era	72	\$17,051,097	\$3,965,787	4.3

CORP

Project Types Funded

Electrical Distribution

Steam Infrastructure

Chilled Water Infrastructure

Plant Additions

Chillers

CORP

Cooling Towers

Energy Conservation

Deferred Maintenance

Heat Pump Loop

Central Utilities at UNL: Thermal Energy Storage (TES) at UNL East Campus

John S. Andrepont, President The Cool Solutions Company

> Big Ten and Friends Mechanical & Energy Conference U of Nebraska-Lincoln – October 15, 2012

Outline

- Intro to Thermal Energy Storage (TES)
 Concept, Drivers, Types, and Characteristics
- The Extensive Use of TES on Campuses
- TES at the UNL East Campus
 - Analysis and Justification
 - Selection, Sizing, and Design SpecificationsInitial Operating Results and Benefits
- Summary and Conclusions

Terminology

- CHP
- CHW
- CHWS / R
- LTF
- NPV
- PSV
- TES

- Combined Heat & Power
- Chilled Water
- CHW Supply / Return
- Low Temperature Fluid
- Net Present Value
- Pressure Sustaining Valve
- Thermal Energy Storage

TES Concept

- Store thermal energy for cooling or heating
- De-couple generation from usage
- Reduce installed equipment capacity (just as in your home water heater)
- Reduce peak power demand
- Shift energy use from peak to off-peak
- TES can be charged-discharged seasonally, weekly, or (most often) daily

Drivers for Using TES

- "Flatten" thermal and electric load profiles
- Reduce electric "demand" costs
- Reduce on-peak energy costs
- Can <u>often reduce net capital costs</u> (through avoided conventional equip investment, e.g. new constr, retro expansion, or equip rehab)
- Reduces life cycle costs of ownership
- Improve operational flexibility and stability
- Can often add redundancy and reliability

Types of TES

- "Full shift" or "partial shift" TES configuration
- Latent Heat TES Systems

 Energy is stored as a change in phase
 Typically, Ice TES
- <u>Sensible Heat</u> TES Systems
 - -Energy is stored as a *change in temp*
 - -Stratified Chilled Water (CHW) TES, or
 - -Stratified Low Temp Fluid (LTF) TES

Inherent Characteristics of TES						
(typical generalizations only)	lce	<u>CHW</u>	LTF			
Volume	good	poor	fair			
Footprint	good	fair	good			
Modularity	excell	poor	good			
Economy-of-Scale	poor	excell	good			
Energy Efficiency	fair	excell	good			
Low Temp Capability	good	poor	excell			
Ease of Retrofit	fair	excell	good			
Rapid Charge/Dischrg Capability	fair	good	good			
Simplicity and Reliability	fair	excell	good			
Can Site Remotely from Chillers	poor	excell	excell			
Dual-use as Fire Protection	poor	excell	poor			

The Extensive Use of TES in Campus District Cooling Applications

TES Survey (IDEA *District Energy* mag, 2005):

- 159 TES installations on 124 campuses
- Over 1.8 million ton-hrs
- Peak load shift over 258,000 tons (194 MW)
- Avg 14,584 ton-hr, 2,083 ton (1.6 MW) / campus
- 78% sensible heat TES (CHW or LTF)
- 22% latent heat TES (lce)
- Many repeat users, e.g. Cal State U system has 16 CHW TES on 14 campuses (278,000 ton-hrs)

TES Analysis for UNL EC

- Inputs: existing & future projected peak cooling loads & 24-hr load profiles; existing CHW plant equip; CHWS/R temps; electric utility rates; CHW distribution issues; siting
- <u>Options:</u> TES type & configuration; temps; location; tank-to-system pumping & valving; all vs. a No-TES base case
- <u>Spreadsheet Outputs:</u> equipment capacities; capital cost; electric & other operating costs; payback & NPV; all vs. a No-TES base case

TES Justification for UNL EC

- 2009 chillers: 7000T total; 4000T "firm" (N-1)
- Peak load: 5020T in 2012; 6000T in 2015
- Postpone new chiller, but add TES by 2012
- Add 2000T chiller in '15; can add 1700T load
- Achieve cooling "load level" w/ N-1 chillers; and deeper "load shift" (beyond cooling load level) with N chillers, for <u>electric</u> load level.
- Reduce demand by 2,000 T (1.6 MW)
 Near 0-yr payback + over \$4M in 20-yr NPV

UNL EC - 24-hr design day (2015)

Peak Day Comparison of TES Options

UNL EC - TES Design / Specifications

- Tank sited remotely from CHW plant, with dedicated TES pumps and PSVs
- Above-grade welded-steel CHW TES tank:
 2.94 M gals gross tank vol. (100' D x 50' H)
- 16,326 T-hrs at 42 / 52 °F CHWS / R temps
- Max load reduction = 4,000 Tons (3.2 MW)
- Turnkey: foundation, tank, diffusers, paint, insulation, thermal performance guarantees

Potential for future conversion to LTF TES at 32 / 52 °F for 32,260 T-hrs and 7,900 Tons

TES Tank, Pumps, Valves, I&C

TES Results & Benefits

- New chiller plant addition avoided/postponed
- Peak demand and electric cost reduced
- Oper'l flexibility & redundancy enhanced
- Low maintenance and long life expectancy
- Also serves as a fire protection reservoir
- CHW TES capacity increases with Delta T, potentially by double with conversion to LTF
- Flat electric load enhances econ's for CHP
- Peak load mgmt aids electric grid (and renewables); thus, utility may offer incentives

Summary and Conclusions

- Cool TES flattens cooling and electric load profiles, and thus aids the economics of campus cooling.
- TES (mostly CHW TES) is widely used on campus.
- For UNL's East Campus, the new CHW TES:
 - meets load growth at near-zero net capital cost,
 - reduces peak demand and electric costs,
 - captures millions of \$ in NPV, and
 - adds oper'l redundancy, reliability, and flexibility.
 Best value from TES occurs at times of:
 new construction, retro expansion, or chiller rehab.

UNL EC - Chiller Load without TES Aug 8, 93 F day with light student load

UNL EC - Chiller Load with TES Aug 30, 92 F with full student load

Acknowledgments

Thank you to:

Owner: The University of Nebraska - Lincoln Electric Utility: LES (Lincoln Electric System) Mechanical Engineer: Lutz, Daily & Brain Project Engineering Manager: Morrissey Engineering Architect: Sinclair Hille Architects Gen'l Contractor: Shanahan Mechanical & Electrical TES Tank: CB&I (Chicago Bridge & Iron)

Questions / Discussion ? Or for a copy of this presentation, contact:

John S. Andrepont **The Cool Solutions Company** CoolSolutionsCo@aol.com Tel: 630-353-9690

University of Nebraska-Lincoln

